4.0 KiB
4.0 KiB
Version 0.1.0 - Project Foundation Complete ✅
Summary
The project foundation for ICT ML Trading System v0.1.0 has been successfully created according to the project structure guide.
What Was Created
✅ Directory Structure
- Complete directory tree matching the project structure
- All required subdirectories for data, models, logs, tests, etc.
.gitkeepfiles in empty directories
✅ Project Files
.gitignore- Comprehensive ignore patternsrequirements.txt- Production dependenciesrequirements-dev.txt- Development dependenciessetup.py- Package installation configurationpyproject.toml- Modern Python project configurationMakefile- Common commands automationREADME.md- Project documentation.pre-commit-config.yaml- Pre-commit hooksCHANGELOG.md- Version historyLICENSE- MIT License
✅ Configuration Files
config/config.yaml- Main application configurationconfig/logging.yaml- Logging setup with JSON and console formattersconfig/detectors.yaml- Pattern detector parametersconfig/models.yaml- ML model hyperparametersconfig/trading.yaml- Trading strategy parametersconfig/alerts.yaml- Alert system configurationconfig/database.yaml- Database connection settings
✅ Core Infrastructure
src/core/constants.py- Application-wide constantssrc/core/enums.py- Enumerations (PatternType, Grade, SetupType, etc.)src/core/exceptions.py- Custom exception hierarchy (7 exception classes)src/core/base_classes.py- Abstract base classes (BaseDetector, BaseModel, BaseFeatureEngineering)
✅ Logging System
src/logging/logger.py- Logger setup and configurationsrc/logging/formatters.py- JSON, Detailed, and Colored formatterssrc/logging/handlers.py- Rotating file handlers and error handlerssrc/logging/filters.py- Sensitive data filter and rate limit filtersrc/logging/decorators.py- @log_execution, @log_exceptions, @log_performance
✅ Configuration Management
src/config/config_loader.py- Load and merge YAML configs with env varssrc/config/settings.py- Pydantic dataclasses for type-safe configsrc/config/validators.py- Configuration validation logic
✅ Test Suite
tests/conftest.py- Pytest fixtures and configurationtests/unit/test_core/test_exceptions.py- Exception teststests/unit/test_logging/test_logger.py- Logger teststests/unit/test_config/test_config_loader.py- Config loader tests
✅ Utility Scripts
scripts/validate_setup.py- Setup validation script
Next Steps
1. Initialize Git Repository (if not done)
git init
git add .
git commit -m "feat(v0.1.0): project foundation with logging and config"
git tag v0.1.0
2. Set Up Virtual Environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
3. Install Dependencies
make install-dev
# Or manually:
pip install -r requirements-dev.txt
4. Create .env File
cp .env.example .env
# Edit .env with your configuration
5. Validate Setup
python scripts/validate_setup.py
6. Run Tests
make test
# Or:
pytest tests/ -v
Validation Checklist
- All directories created
- All configuration files created
- Core infrastructure implemented
- Logging system implemented
- Configuration management implemented
- Initial test suite created
- No linting errors
- Git repository initialized (user needs to do this)
- Dependencies installed (user needs to do this)
- Tests passing (user needs to verify)
Notes
- The logging system uses a singleton pattern to avoid reconfiguration
- Configuration supports environment variable substitution (${VAR} or ${VAR:-default})
- All exceptions include error codes and context for better debugging
- Logging automatically redacts sensitive data (API keys, passwords, etc.)
- Tests use pytest fixtures for clean test isolation
Ready for v0.2.0
The foundation is complete and ready for the next version: v0.2.0 - Data Pipeline