Files
dax-ml/CHANGELOG.md

2.9 KiB

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[0.2.0] - 2026-01-05

Added

  • Complete data pipeline implementation
  • Database connection and session management with SQLAlchemy
  • ORM models for 5 tables (OHLCVData, DetectedPattern, PatternLabel, SetupLabel, Trade)
  • Repository pattern implementation (OHLCVRepository, PatternRepository)
  • Data loaders for CSV, Parquet, and Database sources with auto-detection
  • Data preprocessors (missing data handling, duplicate removal, session filtering)
  • Data validators (OHLCV validation, continuity checks, outlier detection)
  • Pydantic schemas for type-safe data validation
  • Utility scripts:
    • setup_database.py - Database initialization
    • download_data.py - Data download/conversion
    • process_data.py - Batch data processing with CLI
    • validate_data_pipeline.py - Comprehensive validation suite
  • Integration tests for database operations
  • Unit tests for all data pipeline components (21 tests total)

Features

  • Connection pooling for database (configurable pool size and overflow)
  • SQLite and PostgreSQL support
  • Timezone-aware session filtering (3-4 AM EST trading window)
  • Batch insert optimization for database operations
  • Parquet format support for 10x faster loading
  • Comprehensive error handling with custom exceptions
  • Detailed logging for all data operations

Tests

  • 21/21 tests passing (100% success rate)
  • Test coverage: 59% overall, 84%+ for data module
  • SQLAlchemy 2.0 compatibility ensured
  • Proper test isolation with unique timestamps

Validated

  • Successfully processed real data: 45,801 rows → 2,575 session rows
  • Database operations working with connection pooling
  • All data loaders, preprocessors, and validators tested with real data
  • Validation script: 7/7 checks passing

Documentation

  • V0.2.0_DATA_PIPELINE_COMPLETE.md - Comprehensive completion guide
  • Updated all module docstrings with Google-style format
  • Added usage examples in utility scripts

[0.1.0] - 2026-01-XX

Added

  • Project foundation with complete directory structure
  • Comprehensive logging system with JSON and console formatters
  • Configuration management with YAML and environment variable support
  • Custom exception hierarchy for error handling
  • Core constants and enums for pattern types and trading concepts
  • Base classes for detectors and models
  • Initial test suite with pytest
  • Development tooling (black, flake8, mypy, pre-commit hooks)
  • Documentation structure

Infrastructure

  • Git repository initialization
  • Requirements files for production and development
  • Setup.py and pyproject.toml for package management
  • Makefile for common commands
  • .gitignore with comprehensive patterns
  • Environment variable template (.env.example)