Files
dax-ml/V0.1.0_SETUP_COMPLETE.md

4.0 KiB

Version 0.1.0 - Project Foundation Complete

Summary

The project foundation for ICT ML Trading System v0.1.0 has been successfully created according to the project structure guide.

What Was Created

Directory Structure

  • Complete directory tree matching the project structure
  • All required subdirectories for data, models, logs, tests, etc.
  • .gitkeep files in empty directories

Project Files

  • .gitignore - Comprehensive ignore patterns
  • requirements.txt - Production dependencies
  • requirements-dev.txt - Development dependencies
  • setup.py - Package installation configuration
  • pyproject.toml - Modern Python project configuration
  • Makefile - Common commands automation
  • README.md - Project documentation
  • .pre-commit-config.yaml - Pre-commit hooks
  • CHANGELOG.md - Version history
  • LICENSE - MIT License

Configuration Files

  • config/config.yaml - Main application configuration
  • config/logging.yaml - Logging setup with JSON and console formatters
  • config/detectors.yaml - Pattern detector parameters
  • config/models.yaml - ML model hyperparameters
  • config/trading.yaml - Trading strategy parameters
  • config/alerts.yaml - Alert system configuration
  • config/database.yaml - Database connection settings

Core Infrastructure

  • src/core/constants.py - Application-wide constants
  • src/core/enums.py - Enumerations (PatternType, Grade, SetupType, etc.)
  • src/core/exceptions.py - Custom exception hierarchy (7 exception classes)
  • src/core/base_classes.py - Abstract base classes (BaseDetector, BaseModel, BaseFeatureEngineering)

Logging System

  • src/logging/logger.py - Logger setup and configuration
  • src/logging/formatters.py - JSON, Detailed, and Colored formatters
  • src/logging/handlers.py - Rotating file handlers and error handlers
  • src/logging/filters.py - Sensitive data filter and rate limit filter
  • src/logging/decorators.py - @log_execution, @log_exceptions, @log_performance

Configuration Management

  • src/config/config_loader.py - Load and merge YAML configs with env vars
  • src/config/settings.py - Pydantic dataclasses for type-safe config
  • src/config/validators.py - Configuration validation logic

Test Suite

  • tests/conftest.py - Pytest fixtures and configuration
  • tests/unit/test_core/test_exceptions.py - Exception tests
  • tests/unit/test_logging/test_logger.py - Logger tests
  • tests/unit/test_config/test_config_loader.py - Config loader tests

Utility Scripts

  • scripts/validate_setup.py - Setup validation script

Next Steps

1. Initialize Git Repository (if not done)

git init
git add .
git commit -m "feat(v0.1.0): project foundation with logging and config"
git tag v0.1.0

2. Set Up Virtual Environment

python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

3. Install Dependencies

make install-dev
# Or manually:
pip install -r requirements-dev.txt

4. Create .env File

cp .env.example .env
# Edit .env with your configuration

5. Validate Setup

python scripts/validate_setup.py

6. Run Tests

make test
# Or:
pytest tests/ -v

Validation Checklist

  • All directories created
  • All configuration files created
  • Core infrastructure implemented
  • Logging system implemented
  • Configuration management implemented
  • Initial test suite created
  • No linting errors
  • Git repository initialized (user needs to do this)
  • Dependencies installed (user needs to do this)
  • Tests passing (user needs to verify)

Notes

  • The logging system uses a singleton pattern to avoid reconfiguration
  • Configuration supports environment variable substitution (${VAR} or ${VAR:-default})
  • All exceptions include error codes and context for better debugging
  • Logging automatically redacts sensitive data (API keys, passwords, etc.)
  • Tests use pytest fixtures for clean test isolation

Ready for v0.2.0

The foundation is complete and ready for the next version: v0.2.0 - Data Pipeline