feat(v0.1.0): project foundation with logging and config

This commit is contained in:
0x_n3m0_
2026-01-05 11:06:46 +02:00
commit 090974259e
65 changed files with 718034 additions and 0 deletions

127
V0.1.0_SETUP_COMPLETE.md Normal file
View File

@@ -0,0 +1,127 @@
# Version 0.1.0 - Project Foundation Complete ✅
## Summary
The project foundation for ICT ML Trading System v0.1.0 has been successfully created according to the project structure guide.
## What Was Created
### ✅ Directory Structure
- Complete directory tree matching the project structure
- All required subdirectories for data, models, logs, tests, etc.
- `.gitkeep` files in empty directories
### ✅ Project Files
- `.gitignore` - Comprehensive ignore patterns
- `requirements.txt` - Production dependencies
- `requirements-dev.txt` - Development dependencies
- `setup.py` - Package installation configuration
- `pyproject.toml` - Modern Python project configuration
- `Makefile` - Common commands automation
- `README.md` - Project documentation
- `.pre-commit-config.yaml` - Pre-commit hooks
- `CHANGELOG.md` - Version history
- `LICENSE` - MIT License
### ✅ Configuration Files
- `config/config.yaml` - Main application configuration
- `config/logging.yaml` - Logging setup with JSON and console formatters
- `config/detectors.yaml` - Pattern detector parameters
- `config/models.yaml` - ML model hyperparameters
- `config/trading.yaml` - Trading strategy parameters
- `config/alerts.yaml` - Alert system configuration
- `config/database.yaml` - Database connection settings
### ✅ Core Infrastructure
- `src/core/constants.py` - Application-wide constants
- `src/core/enums.py` - Enumerations (PatternType, Grade, SetupType, etc.)
- `src/core/exceptions.py` - Custom exception hierarchy (7 exception classes)
- `src/core/base_classes.py` - Abstract base classes (BaseDetector, BaseModel, BaseFeatureEngineering)
### ✅ Logging System
- `src/logging/logger.py` - Logger setup and configuration
- `src/logging/formatters.py` - JSON, Detailed, and Colored formatters
- `src/logging/handlers.py` - Rotating file handlers and error handlers
- `src/logging/filters.py` - Sensitive data filter and rate limit filter
- `src/logging/decorators.py` - @log_execution, @log_exceptions, @log_performance
### ✅ Configuration Management
- `src/config/config_loader.py` - Load and merge YAML configs with env vars
- `src/config/settings.py` - Pydantic dataclasses for type-safe config
- `src/config/validators.py` - Configuration validation logic
### ✅ Test Suite
- `tests/conftest.py` - Pytest fixtures and configuration
- `tests/unit/test_core/test_exceptions.py` - Exception tests
- `tests/unit/test_logging/test_logger.py` - Logger tests
- `tests/unit/test_config/test_config_loader.py` - Config loader tests
### ✅ Utility Scripts
- `scripts/validate_setup.py` - Setup validation script
## Next Steps
### 1. Initialize Git Repository (if not done)
```bash
git init
git add .
git commit -m "feat(v0.1.0): project foundation with logging and config"
git tag v0.1.0
```
### 2. Set Up Virtual Environment
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
### 3. Install Dependencies
```bash
make install-dev
# Or manually:
pip install -r requirements-dev.txt
```
### 4. Create .env File
```bash
cp .env.example .env
# Edit .env with your configuration
```
### 5. Validate Setup
```bash
python scripts/validate_setup.py
```
### 6. Run Tests
```bash
make test
# Or:
pytest tests/ -v
```
## Validation Checklist
- [x] All directories created
- [x] All configuration files created
- [x] Core infrastructure implemented
- [x] Logging system implemented
- [x] Configuration management implemented
- [x] Initial test suite created
- [x] No linting errors
- [ ] Git repository initialized (user needs to do this)
- [ ] Dependencies installed (user needs to do this)
- [ ] Tests passing (user needs to verify)
## Notes
- The logging system uses a singleton pattern to avoid reconfiguration
- Configuration supports environment variable substitution (${VAR} or ${VAR:-default})
- All exceptions include error codes and context for better debugging
- Logging automatically redacts sensitive data (API keys, passwords, etc.)
- Tests use pytest fixtures for clean test isolation
## Ready for v0.2.0
The foundation is complete and ready for the next version: **v0.2.0 - Data Pipeline**